
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

129

A Comprehensive Survey of Malware Detection

Approaches in Cloud Computing Environments
[1] Sheethal Mariya Binoy, [2] Shafc Sulthana, [3] Nandagovind P, [4] Ms. Jomina John

[1] [2] [3] [4] Department of Computer Science and Engineering, Rajagiri School of Engineering and Technology,

Kochi, Kerala, India
[4] Assistant Professor, Department of Computer Science and Engineering, Rajagiri School of Engineering and Technology,

Kochi, Kochi, Kerala, India

Corresponding Author Email: [1] msheethal7@gmail.com, [2] shafcsulthana@gmail.com, [3] nandagovind.praveen@gmail.com,
[4] jominacj@gmail.com

Abstract— Malicious software or malware is on the rise, with an increasing number of sophisticated variants employing various

obfuscation techniques. Detecting malware before it wreaks havoc on computer systems and the Internet is imperative. This paper offers

a comprehensive survey of existing malware detection approaches, shedding light on the persistent challenges in this domain. This paper

presents a literature survey that delves into cloud-based malware detection methods or models. This thorough analysis looks at four

different methods for detecting malware, each designed for a particular environment and taking care of a different set of problems. The

Proposed Malware Detection Model (PMDM) and Cloud Deployment Model (CDM) make up the first model, which suggests a malware

detection system for cloud deployment. PMDM uses behavioral, symbolic, and DNA sequence detection processes to improve system

flexibility and speed. To detect malware in a scalable and easily accessible manner, CDM uses Eucalyptus in an actual cloud setting. The

second method uses a Cloud-Based Behavior Centric Model, dynamic analysis tools, and several machine learning algorithms to present

an intelligent behavior-based malware detection system for cloud environments. The third technique, called TrustAV, maximizes

malware scanning efficiency by utilizing a multimodal strategy inside Intel SGX enclaves. The fourth framework uses the computational

power of security labs to simulate end- user environments and presents a cloud-based malware analysis system based on dynamic

behavior. A thorough examination of system call interception and proxying, one-way isolation, and integration with currently available

malware detectors are included in the paper’s conclusion. This review sheds light on various approaches, their advantages,

disadvantages, and possible areas for development in the dynamic field of intelligent malware detection.

Index Terms—malware detection, cloud computing.

I. INTRODUCTION

The democratization of cloud computing technology has

transformed the way data and applications are collected,

processed, and made available to a vast range of users at

unprecedented convenience, capacity, and cost efficiency.

However, the paradigm shift also opens up new avenues for

malicious actors to exploit vulnerabilities in cloud

environments. Malware, which has become an ongoing

danger to the security of information, is adapting and

reconfiguring how it infiltrates and compromises cloud

computing systems that could result in significant damage or

data breaches. This has become a major and pressing concern

with regard to developing effective detection mechanisms for

malicious software that are suited to the cloud computing

environment.

Malware mainly targeted networks and individual devices

in the early days of cloud computing adoption.

Cybercriminals realized there was a chance to breach these

shared computing environments as companies moved their

infrastructure to the cloud. Cloud services were first used by

malware developers to host malicious payloads, which

allowed them to get around conventional security measures

and carry out attacks more quickly. The incorporation of

fileless and polymorphic mal- ware into cloud-based assaults

is one noteworthy development. The code of polymorphic

malware is constantly changing, making it difficult for

conventional signature-based detection techniques to stay

upto date. Polymorphic malware can quickly adapt to various

instances in the cloud, where dynamic scaling is frequently

used, making detection more difficult and raising the risk of

extensive harm. [9]Another notable change is the use of

fileless malware in cloud environments. Fileless malware

frequently uses reputable system tools and processes as

launchpads for its malicious operations since it runs in

memory and leaves little to no trace on disk. Fileless malware

can operate without leaving traditional traces in the cloud,

where serverless architectures and ephemeral instances are

common. This makes it evasive to traditional security

measures. [10]Furthermore, a growing emphasis on taking

advantage of weaknesses in cloud infrastructure elements

like orchestration platforms, containers, and serverless

functions characterizes the evolution of malware in the cloud.

Malicious actors can launch attacks, obtain unauthorized

access, or jeopardize the integrity of cloud-based applications

by taking advantage of errors or flaws in these components.

[17] The threat landscape in this dynamic environment is

changing in tandem with the increasing popularity of cloud

computing. Malicious actors use cloud resources to spread

sophisticated malware, constantly changing their strategies.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

130

Comprehending this progression is essential to formulating

efficacious countermeasures that surpass conventional

security protocols. The following sections thoroughly

examine suggested models, behavior-centric frameworks,

enclave-based solutions, and cloud-integrated analysis,

highlighting their advantages and possible uses in the

continuous fight against malware threats that are constantly

changing. [8]

II. RELATED WORKS

A malware detection technique for cloud computing based

on convolutional neural networks (CNNs) was presented by

Abdelselam et al. [1] Using VM process data obtained from

the hypervisor, they trained a conventional 2-D CNN, and

then they used a 3-D CNN to increase accuracy even further.

The 2-D CNN model had an accuracy rate of 79% in the

experimental findings utilizing different malware on virtual

machines (VMs); this significantly climbed to 90% with the

3-D model. The research makes recommendations for

possible enhancements by increasing the experiment’s scope

to include a larger variety of malware binaries. The malware

detection game that uses cloud computing, in which mobile

devices submit application traces to security servers via

access points or base stations in dynamic networks was

examined by Xiao et al. [18] The malware detection system

Q-learned was created with a mobile device in mind. The

objective of this research is to attain the best payload transfer

ratio while remaining unaware of the radio bandwidth model

and trace creation of various mobile devices. They

accelerated the reinforcement learning stage with a post-

decision learning technique and improved performance with

the Dyna architecture. A cloud-assisted model was proposed

by Zhou and Yu [19] for the dynamic differential game

against malware trans- mission and detection. In the proposed

methodology, data is shared on the cloud security platform to

develop a malware detection model based on SVM. Second,

based on the features of the wireless multimedia system

(WMS), the number of malware-infected nodes that

physically infect vulnerable nodes is computed. Ultimately,

the modified epidemic model describes the states

transitioning between WMS devices, and the Hamilton

function has been introduced to streamline the saddle point

solution. Additionally, a target cost function and dynamic

differential game for the malware-WMS system Nash

equilibrium have been successively derived. [7] SplitScreen

is a brand-new malware detection system that Cha et al.

proposed [3].

Before the signature matching stage, this distributed

malware detection system performs an additional screening

step. Client-server processes make up SplitScreen’s

two-stage screening procedure. Using half of the memory,

the proposed method was implemented as an extension of

ClamAV, increasing the scanning throughput more than two

times the signature set. As the authors pointed out,

SplitScreen performs better in terms of memory savings and

acceleration as the number of signatures rises. The suggested

approach works with a variety of low-end consumer and

handheld devices. Since the cloud side only uses one server,

it would be preferable to maximize server efficiency and

place some workload on the client. A machine learning-based

detection method for the cloud environment was proposed by

Indirapriyadarshini et al. [6] After obtaining the worst log

loss through random modeling, they employed various

modeling techniques like KNN and LR. They next assessed

each algorithm’s log loss to see if it was a perfect model. The

ML model and user interface were then finally deployed on

the AWS cloud. To ascertain the legitimacy of the file, the

authors claimed to have discovered a novel approach by

utilizing cloud computing and machine learning in tandem.

Nevertheless, this research can be improved by using new

learning models or alternative data mining approaches for

feature selection. Using a sizable dataset, Mirza et al. [13]

suggested combining several machine learning techniques.

The two primary objectives of the paper were low resource

consumption and higher DR. To achieve the maximum

detection rate, they took a subset of features—both malicious

and normal files—and extracted them from the dataset. Then,

they applied boosting, SVM, and decision trees to the

decision tree.

In the CloudIntell assessment, the decision tree classifier’s

boost resulted in improved performance. Additionally, they

unveiled a cloud- based architecture that is scalable and runs

on Amazon Web Services (AWS). They used various

scenarios to test the suggested methodology. The authors

claim that their methodology yielded excellent results while

using the least amount of energy. In an additional study,

Mirza et al. [12] proposed an energy-efficient hosting model

that enhances a distinct and scalable model by combining

various components of Amazon cloud services. This study

looked at known antivirus programs and benchmarking data

for cloud-based hosting. As per the paper, the suggested

method not only worked well for the hosted detection

framework but also outperformed conventional antivirus

software in terms of optimal performance. However, by

including the intrusion detection mechanism to be supported

by the cloud-based engine, the malware detection framework

and hosting model can be further enhanced. [15]

III. MALWARE DETECTION APPROACHES

Malware, for “malicious software” is a broad class of

destructive applications that are purposefully designed to

undermine the safety and operation of computer systems,

networks, and user information. A wide variety of malicious

programs can be used, including worms, Ransomware, trojan

horses, spyware and more that seek to destroy or gain

unauthorized access. The fact that malware is present on

cloud platforms demonstrates the complexity of the

environment, with numerous different ways in which the

propagation and infiltration can take place.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

131

Malware has become a frequent entry point to clouds

through infected files and documents. The user can share files

containing malicious software, on purpose or unintentionally,

causing the virus to spread in a common cloud environment.

Moreover, malware has found access points to the cloud’s

applications, services and infrastructure. The hostile actors

are given an opportunity to penetrate and move around the

cloud ecosystem by exploiting these vulnerabilities, which

may include anything from software bugs to wrong

configurations. Phishing also plays a critical part in the

spread of cyber threats on cloud platforms. Exploit users to

disclose their personal data or logins, attackers can gain

unauthorized access and in some cases may launch a

malicious program. Another vector is insecure API

programming interfaces since hackers can use them to

compromise cloud environments by exploiting these poorly

secured interfaces. The vulnerability to unauthorized access

and the possible dissemination of dangerous con tent is

heightened by weak passwords or security weaknesses that

compromise user accounts.

The threats landscape also includes situations in which

users get inadvertently infected by driver downloads, when

they search for a malicious website or try to engage with

undesirable content that triggers automatic download and

execution of malware. The risk of the introduction of

malware via intentional actions or unintentional usage of

compromised devices by employees or contractors with

access to cloud platforms is high. Insider threats can be both

intentional and inadvertent.

A full strategy is needed to mitigate the risk of malicious

attacks in cloud environments. Organizations need to

implement strong security arrangements, such as regular

audits aimed at identifying and repairing vulnerabilities,

training their staff to use new antivirus software or using it

most recently. Strict security protocols and encryption

methods should be implemented in order to avoid any

undesired access or data breaches. For rapid identification

and effective containment of possible malware threats, it is

essential to have a clearly de- fined Incident Response Plan

and Ongoing Cloud Environment Monitoring. In order to

keep pace with the constantly evolving landscape of

malware, due to its dynamic and interdependant nature, cloud

computing calls for an active and continuous security

approach.

A. Intelligent behavior based detection

 Model architecture, dataset, features, and detection

methods are all part of the comprehensive approach

presented by the suggested intelligent behavior-based

malware detection system, which is tailored for cloud

environments. [2] Using a computer network, a user uploads

a questionable file to the cloud using this system. The file that

has been submitted is executed in multiple Virtual Machines

(VMs), and dynamic tools are utilized to collect the execution

traces. These traces are then fed into a behavior-based

detection agent, which creates features by grouping and

generating behaviors according to predefined rules using the

Cloud-Based Behavior Centric Model (CBCM).

For efficient feature generation and selection, the

subtractive center behavior model is modified and used as the

CBCM model. This model uses system calls, paths, resource

types, and file types to identify patterns of malicious

behavior. The objective is to extract the key characteristics

that help differentiate benign samples from malicious ones.

By establishing connections between system calls, the

behavior creation algorithm generates meaningful

activity-based behaviors.

The suggested approach also tackles the difficulties

associated with automatically creating datasets, pointing out

flaws in the state-of-the-art models like n-gram and offering

CBCM as a remedy. By producing fewer, more pertinent

features, the system hopes to shorten detection times and

increase Detection Rate (DR).

Process Explorer, API Monitor, and Process Monitor are

examples of dynamic analysis tools used in the malware

analysis process. The CBCM model is used to create

behaviors and features in the behavior-detection agent based

on the collection of execution traces from various virtual

machines. The suggested model is more effective overall

because behavior generation, feature extraction, and feature

selection are integrated.

Figure 1. Architecture Diagram

And features in the behavior-detection agent based on the

collection of execution traces from various virtual machines.

The suggested model is more effective overall because

behavior generation, feature extraction, and feature selection

are integrated.

A variety of machine learning algorithms, such as logistic

model trees (LMT), C4.5 (J48), random forest (RF), simple

logistic regression (SLR), sequential minimal optimization

(SMO), and k-nearest neighbor (KNN), are used to train

specific features in the learning-based detection agent. A

dataset is created using the frequencies of the features, and

classifiers are then used to identify each sample as benign or

malicious. During the training stage, holdout and cross-

validation techniques are used, and decision trees like C4.5,

LMT, and RF work well with the feature distribution of the

dataset.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

132

The rule-based detection agent uses a predefined property

list that is derived from malware behaviors, so it doesn’t

require a training phase to function. This list, which is

constantly updated with new malware features, groups

features according to how frequently they occur. The

analyzed program is classified as malicious if its features

match those in the list; if not, it is classified as benign.

Compared to the learning- based detection agent, the

rule-based detection agent functions more quickly and is

more effective at identifying different types of malware.

The architecture of the system is given in Figure 1. The

suggested system uses the behavior-based detection agent to

compare and reconcile classification discrepancies by

combining the output from the two detection agents. In order

to address the need for automated analysis and feature

extraction, the overall methodology offers a comprehensive

and flexible approach to intelligent behavior-based malware

detection in cloud environments.

B. Pattern based detection

 The Proposed Malware Detection Model (PMDM) and

the Cloud Deployment Model (CDM) are the two primary

components of the proposed malware detection system,

which is intended for cloud deployment. [14] The PMDM

seeks to resolve issues with antivirus software, improve

system speed, and provide options for a more effective and

adaptable work environment. In the PMDM, three distinct

processes are employed for malware detection:

1) DNA Sequence Detection Process: In this first phase,

DNA sequences are extracted from files and converted to

binary format. A reversible conversion table is utilized to

convert corresponding bits into characters found in the

DNA sequence. Following their conversion from binary

files to FASTA sequences, the files are combined into a

single FASTA sequence file called Malware Sequence

Database. (Fig 2) Using the Blast online tool, similarities

between the Malware Sequence Database and the FASTA

sequence file are analyzed. The file is deemed

non-malicious if the BLAST report’s identity percentage

is less than 80%. In the event that it is between 80% and

90%, the second procedure proceeds with additional

detection. A number higher than 90% suggests that the

second process has blocked a harmful file.

2) Symbolic Detection Process: Files that make it through

the first step are grouped according to their file format. In

symbolic detection, files are transformed into symbol

files and then compared to an existing database table of

symbol signatures that include traditional malware

signatures. The file may be harmful if the symbols do not

match; if they do, it is deemed malicious and is blocked

for the third process.

3) Behavioral Detection Process: Files that make it past the

second step are subjected to behavioral malware detection

through the use of a virtual machine, namely the Anubis

sandbox. Using API calls, Anubis interacts with the file

and observes its activity to detect the existence of

malware. Whether or whether the file is harmful is

determined by the results.

Figure 2. Creating BLAST database

Using the Eucalyptus open-source software, the CDM

entails installing the PMDM into a cloud architecture.

Implementing PMDM in a real cloud environment and

assessing its resilience to known and unknown harmful

assaults is the goal of CDM. The Eucalyptus architecture

only partially implements PMDM due to architectural

constraints. By using the previously covered procedures, the

system seeks to identify malicious code. It then issues alerts

and prevents malicious files from accessing Guest VMs and

Guest Operating Systems. By utilizing the advantages of

cloud computing for efficient malware detection, the

deployment into the cloud improves scalability and

accessibility.

C. Cloud-powered framework for security based

assessment

 In this paper, a novel cloud-based malware analysis

frame- work based on dynamic behavior is presented. The

framework attempts to combine end-users’ varied and

realistic environments with the copious computational

resources of cloud- based security labs. The fundamental

tenets are as follows: first, security labs have infinite

computational capacity and can grow their capabilities by

adding new hardware features and advancing research.

Second, end-user environments are thought to be more

appropriate for analyzing potentially malicious software due

to their authenticity and heterogeneity when compared to

typical security lab setups.

With the help of the suggested framework, [11] end users

can assign potentially malicious program execution and

analysis to a security lab, which will simulate the program’s

behavior as if it were running in the end user’s environment.

This strategy has two benefits. It gives the security lab the

ability to watch a potentially malicious program run in an

environment similar to that of an end user, and it gives end

users the ability to increase their level of protection by using

the security lab’s computational resources for in-depth

analysis that might not be possible in other circumstances.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

133

The framework increases analysis completeness by

observing how a program behaves in multiple realistic

end-user environments within the cloud, since each

end-user’s environment is different and a program’s behavior

heavily depends on the execution environment. A developed

mechanism that forwards and executes a portion of the

system calls invoked by the analyzed program to a remote

end-user’s environment and retrieves the computation results

is what allows the execution to take place in the cloud. By

following this procedure, the analyzed program operating in

the security lab is guaranteed to replicate the behavior exactly

as if it were run in the user’s environment.

1) Executing a program in multiple environments:

a) System calls hooking:: In order to intercept system calls

in the program under analysis, the paper uses system calls

hooking. It injects a DLL into the suspended process’ virtual

address space by means of a user-space hooking technique.

By hooking into Microsoft Windows’ KiIntSystemCall and

KiFastSystemCall functions, the DLL makes development

and integration with pre-existing malware detection systems

easier. By taking this approach, the framework can monitor

and intercept system calls with greater effectiveness, which

helps with dynamic behavior-based malware analysis.

b) System calls proxying:: In order to control how re-

sources are handled within the examined program, the paper

presents a technique called system calls proxying. It is

predicated on the idea that system calls are necessary to

obtain handles for manipulation because user-space

applications do not have direct access to system resource data

structures. Based on the call’s nature and potential security

risks, this method- ology seeks to establish whether a given

system call should be performed in a remote or local

environment.

Figure 3. System calls interception and remote execution

Whether a system call creates or uses a handle to

manipulate resources determines whether the execution is

local or remote. When a call generates a handle—like when a

file is opened—the resource being accessed is examined.

Should tampering with this resource possibly result in

malevolent actions, the call is classified as remote and is

carried out in an isolated setting. On the other hand, if the

resource manipulation is considered harmless, the call is

carried out locally. In addition, the system determines

whether a resource is local or remote before intercepting a

system call that uses a handle to manipulate it. This

assessment is used to determine the appropriate environment

in which to execute the call in order to handle any potential

security risks related to resource manipulation. A dynamic

analysis of the program’s behavior is made possible by this

methodical system calls proxying technique, which enables

the framework to distinguish between local and remote

resource manipulations based on any potential security

implications. Every system call that the analyzed program (P)

makes is intercepted in the suggested framework. While

remote system calls are routed to the end-user’s system, local

system calls are sent straight to the kernel. The local system

(L) serializes the system call arguments and sends them to the

user environment (U) so that the remote system call can be

executed there. After receiving the arguments, U deserializes

them, sets up the registers and stack in order to prepare the

program for execution, and then executes the system call. U

serializes the output arguments and returns them to L after the

system call has finished. L then deserializes the output

arguments to the anticipated locations in the program’s

memory, allowing normal operation to resume. It’s important

to note that P, the analyzed program, is still unaware that

some system calls are being run remotely. This is

accomplished by giving the program the expected output in

memory, which guarantees smooth operation whether the

system call was made locally or remotely.

c) Choosing remote system calls:: The system calls that are

marked as remote are chosen by the framework using a

whitelist. This whitelist consists of a list of system call names

and a collection of requirements determined by the callers’

arguments. System calls that are considered remote include

NtOpenKey, NtCreateKey (in case the arguments indicate

that the key is being opened for reading), NtOpenFile,

NtCreateFile (in case the arguments indicate that the file is

being opened for reading), NtQuerySystemInformation, and

NtQueryPer- formanceCounter. The handles returned by

these calls are specifically marked as remote by setting the

most significant bits (unused bits) in order to make it easier to

identify remote system calls. This method guarantees that any

further system calls that make reference to these handles will

be identified as gaining access to remote resources.

Furthermore, this approach ensures that handles referring to

local and remote resources do not potentially overlap,

offering a reliable way to differentiate between the two kinds

of resource access.

d) GUI system calls:: User inputs and graphical user

interface (GUI) resources are critical trigger conditions

within the framework. In order to facilitate realistic user

interaction with the analyzed program, especially with GUI

events, the framework makes use of the Windows Terminal

Services subsystem. This subsystem makes it easier for the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

134

monitored application’s graphical user interface to be

automatically forwarded from the security lab to the user’s

computer. In particular, the prototype makes use of smooth

Remote Desktop Protocol (RDP), which makes it possible to

export only an application’s graphical user interface to a

remote host as opposed to the full desktop session. By using

this method, the user’s computer will display a phony login

form without any difficulty if the lab’s analyzed program

prompts one and requests input from the user. Input events

from the user, like keystrokes and mouse clicks, are then

relayed back to the lab program. It’s crucial to remember that

even though this RDP- based solution allows GUI forwarding

to a remote system, the session in which the application runs

is still owned by the security lab. As a result, inquiries

concerning the execution environment would provide data

from the laboratory. System calls related to API functions

such as GetWindowText and GetForegroundWindow for

example, would return windows from the lab session. These

functions are used by a sample malware to detect whether the

victim is visiting the website of a Brazilian bank. In order to

remedy this, these system calls are run remotely in the same

way as other remote system calls, making sure that the

information they return is about the windows in the real

remote environment and not the lab.

e) One-way isolation:: The framework’s main goal is to

protect the end-user’s system from any potential harm that

the examined program might cause while still permitting the

program to run without interruption. The framework uses a

tactic called one-way isolation to accomplish this. This

method [11] ensures that changes are made locally by

allowing “read” accesses to remote system resources but

limiting “write” accesses. More specifically, the framework

treats the resource as local and does not proxy the call if the

analyzed program starts a system call to create or modify a

resource that is normally considered remote. For the purpose

of keeping the program state consistent, subsequent system

calls involving such a resource are additionally performed

locally. By blocking potentially damaging changes, this

one-way isolation technique safeguards the end-user’s

system while enabling the examined program to access data

from distant sources. Nevertheless, the framework’s current

prototype does not allow system modifications made in the

lab to be committed to the end user’s environment.

Furthermore, the framework does not support the proper

isolation of a program that uses a resource that is being used

concurrently by another program. These features point out

areas that could be improved in upcoming framework

revisions.

2) In the cloud behavior-based malware detector:

The framework is integrated into an existing detector to

demonstrate how it works in unison with behavior-based

malware detectors. Based on virtual machine introspection,

this specific detector can detect data-flow dependencies

between system call arguments and provides fine-grained

information flow tracking. A specially designed system

emulator that supports system call interception and taint

analysis with multiple taint labels is the foundation of the

malware detector. It took only a small adjustment to

incorporate our framework into this already-existing detector

so that it could differentiate between system calls made by

the suspicious program and those that our prototype for

proxying system calls handled, thereby enabling it to ignore

the latter. In order to keep track of a suspicious program’s

execution in multiple end-user environments, we just run

multiple instances of the improved malware detector, each of

which works with a separate end-user’s machine, and then

combine the findings. Interestingly, the problem of

correlating the outcomes from various analyses has not been

tackled up to this point. This integration demonstrates how

our framework can coexist peacefully with cutting-edge

malware detection methods, improving the system’s overall

ability to identify and analyze malicious activity in a variety

of settings.

D. TrustAV Model

 Within the Intel SGX enclaves, TrustAV is being

implemented using a multimodal approach to malware

scanning. With the help of the well-known Aho-Corasick

pattern matching algorithm, which is frequently used in

signature-based programs such as ClamAV, TrustAV makes

sure that the malware scanning procedure takes place entirely

inside of SGX enclaves. The major objectives of this

approach are to safeguard executed code, protect user

privacy, and uphold the integrity of the signature set. [4] One

of TrustAV’s unique features is the serialization of the

Aho-Corasick DFA into a single-dimensional integer array.

This was a crucial decision made to overcome memory

constraints and potential performance deterioration from

scattered node traversal during pattern matching, which are

issues with SGX enclaves.A key element of TrustAV’s

implementation is the SGX enclave I/O system, which

emphasizes safe and effective communication with the

enclaves. Since SGX enclaves do not have direct access to

system calls, the TrustAV server’s non- SGX enabled

segment is in charge of managing the network sockets needed

to receive client data. To reduce performance overhead,

encrypted client data is batched, and a buffer is used for

workload-based dynamic optimization, enabling effective

data transfer into the enclave. In order to prevent

compromised servers from accessing plaintext data or secret

keys kept in main memory or the file system, user data is

encrypted inside the enclave.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

135

Figure 4. TrustAV design overview

The architecture of TrustAV (Fig 4) places a high priority

on performance optimizations, especially when it comes to

resolving the memory footprint issues with signature-based

solutions. The CPU’s constrained cache size is a major

obstacle, particularly when automaton size surpasses this

limit. In order to reduce access to pages kept outside of the

Enclave Page Cache (EPC) and to safeguard big automata on

Windows- based platforms, TrustAV implements unique

caching techniques. To increase efficiency and minimize

memory footprint, the solution incorporates an LRU cache

and a configurable-size cache with a maximum capacity of

90MB. To protect cached automaton states, encryption is

used by both caching methods. TrustAV expands its use to

client apps, supporting desktop and mobile operating

systems. By enabling remote attestation, the desktop client

improves the security of the remote server connection.

Concurrently, the mobile client offers customers detailed

configuration choices for scanning intervals, enabling

optimization of battery life and network traffic. In addition to

implementing secure persistent storage of the white-list,

which is exported to the file system in an encrypted format

with corresponding checksums for integrity verification, both

clients register for services with the server. Because of its

modular architecture, TrustAV makes it easier to construct

clients for different platforms and guarantees that they will

work with a wide range of devices and operating systems.

TrustAV places a high priority on protecting user privacy

by using hardware-assisted enclaves — Intel SGX, in

particular, to guarantee the security and privacy of user data

even in untrusted environments. This method protects user

data from unauthorized access and from being exposed to

malicious entities by encapsulating both its movement and

processing. The fundamental tactic is to only analyze

malware inside of secure areas in order to avoid

compromising private data. Furthermore, TrustAV uses

secure offloading, which enables malware analysis to be

carried out on a distant server inside hardware-enabled secure

enclaves. This preserves productivity while offering a high

degree of security for managing personal user information in

possibly untrusted environments.

IV. COMPARISON

 In comparison to current state-of-the-art malware

detection methods, the proposed approaches in the paper

present notable advancements. The integration of the

Proposed Malware Detection Model (PMDM) and Cloud

Deployment Model (CDM) introduces a versatile solution

that effectively balances adaptability and scalability.

PMDM’s incorporation of behavioral, symbolic, and DNA

sequence detection processes enhances system flexibility and

speed, addressing challenges posed by the dynamic nature of

evolving malware. Additionally, the CDM’s utilization of

Eucalyptus in cloud settings ensures scalability and

accessibility, overcoming issues associated with deploying

detection systems in diverse cloud environments. [16] This

contrasts with some existing methods that may lack agility or

prove resource-intensive in dynamic cloud settings. The

Cloud-Based Behavior Centric Model represents a departure

from conventional detection methods prevalent in the current

state of the art. [5] By integrating dynamic analysis tools and

machine learning algorithms, it aligns with the industry’s

shift towards more sophisticated and adaptive detection

mechanisms, providing a forward-looking perspective.

TrustAV further augments the proposed models by

incorporating hardware-level security measures, a departure

from prevalent software-centric strategies.

Table 1. Comparison of existing methods

Paper Method Advantage Disadvantage

Ref 8

Intelligent

behavior based

malware

detection in cloud

Utilizes dynamic

analysis tools for

comprehensive

malware analysis

Rule-based

agent lacks

adaptability to

emerging

threats

Ref 9

Pattern based

malware

detection

Multifaceted

Detection

Approach by

integrating DNA

sequence,

symbolic, and

behavioral

detection

processes

CDM faces

Limitations in

 fully

implementing

the PMDM due

to architectural

constraints

within the

Eucalyptus

framework

Ref 10

Framework based

on dynamic

behavior 2

Enhanced

security through

undetectable

systems thwarts

evasion attacks

Privacy risks

and incomplete

implementation

compromise

system integrity

Ref 11

Cloud based

malware

detection model

called TrustAV

Protects the

transmission and

processing of

user data in

distrusted

networks

Intel SGX Size

limits hinder

malware

scanning engine

sophistication.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

136

Utilizing Intel SGX enclaves, TrustAV maximizes

malware scanning efficiency, addressing a critical gap in the

state of the art and fortifying the detection process with

advanced hardware features for a more resilient defense

against sophisticated threats. Overall, these proposed

approaches contribute to the ongoing evolution of intelligent

malware detection, offering comprehensive and effective

solutions against the increasing sophistication of malicious

software. The common objective of all the four papers is to

detect the presence of malware in the cloud platform.

Although the papers widely differ in their methodologies,

they have proved to achieve their objective. Various

advantages and disadvantages of the four papers are given in

the Table 1.

V. CONCLUSION

We have examined four different methods for detecting

malware in this thorough literature review, each of which is

designed to take into account the changing threat landscape in

various computing environments. By utilizing DNA

sequence detection, symbolic detection, and behavioral

detection processes, the suggested malware detection system

for cloud deployment demonstrates a comprehensive defense

strategy. An efficient solution for cloud environments is

provided by the intelligent behavior-based malware detection

system, which emphasizes the integration of virtual

machines, ma- chine learning algorithms, and dynamic tools.

Using Intel SGX enclaves for malware scanning and placing

a strong emphasis on performance optimization in the face of

memory limitations, TrustAV presents a novel approach.

Furthermore, to improve analysis scalability and

completeness, the cloud- based malware analysis framework

innovates by fusing cloud- based security labs with end users’

actual environments.

In the future, the focus of malware detection research will

be on improving these strategies to stay up with the

constantly changing threat landscape. Malware detection

systems need to change to keep up with the rapidly evolving

cloud computing landscape, which includes new

technologies like edge computing and the Internet of Things.

The incorporation of artificial intelligence, specifically

through advanced machine learning and deep learning

models, has the potential to improve malware detection

accuracy and efficiency. Furthermore, investigating

cooperative strategies that make use of threat intelligence

exchanges between institutions can fortify the group’s

defenses against malware strains that are evolving quickly

and becoming increasingly sophisticated. As the field

develops, addressing privacy issues, ethical issues, and

guaranteeing the smooth integration of these detection

systems into various cloud architectures should also be top

priorities. Future malware detection systems will be more

resilient, adaptable, and privacy-aware thanks to the

synthesis of these developments and considerations

REFERENCES

[1] Mahmoud Abdelsalam, Ram Krishnan, Yufei Huang, and

Ravi Sandhu. Malware detection in cloud infrastructures using

convolutional neural networks. In 2018 IEEE 11th

international conference on cloud computing (CLOUD),

pages 162–169. IEEE, 2018.

[2] Omer Aslan, Merve Ozkan-Okay, and Deepti Gupta.

Intelligent behavior-based malware detection system on cloud

computing environment. IEEE Access, 9:83252–83271, 2021.

[3] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove,

David Brumley, and David G Andersen. Splitscreen: Enabling

efficient, distributed malware detection. Journal of

Communications and Networks, 13(2):187–200, 2011.

[4] Dimitris Deyannis, Eva Papadogiannaki, Giorgos

Kalivianakis, Giorgos Vasiliadis, and Sotiris Ioannidis.

Trustav: Practical and privacy preserving malware analysis in

the cloud. In Proceedings of the tenth ACM conference on

data and application security and privacy, pages 39–48, 2020.

[5] Himanshu Gupta, Akashdeep Bhardwaj, et al. Securing the

cloud: An in-depth exploration of conceptual models,

emerging trends, and forward-looking insights. 2023.

[6] P Indirapriyadarsini, Mohammed Uzair Mohiuddin,

Mohammed Taqueeuddin, Ch Srikanth Reddy, and T

Koushik. Malware detection using machine learning and

cloud computing. Int. J. Res. Appl. Sci. Eng. Technol.,

8(6):101–104, 2020.

[7] R Jayanthi and K John Singh. A public key-based encryption

and signature verification model for secured image

transmission in network. International Journal of Internet

Technology and Secured Transactions, 9(3):299–312, 2019.

[8] Jomina John and Jasmine Norman. Analysis of worm attack

detection methods in cloud find a better solution for malware

in cloud. International Journal of Applied Engineering

Research, 10(92):2015.

[9] Jomina John and Jasmine Norman. Major vulnerabilities and

their prevention methods in cloud computing. In Advances in

Big Data and Cloud Computing: Proceedings of ICBDCC18,

pages 11–26. Springer, 2019.

[10] Osama Khalid, Subhan Ullah, Tahir Ahmad, Saqib Saeed,

Dina A Alabbad, Mudassar Aslam, Attaullah Buriro, and

Rizwan Ahmad. An insight into the machine-learning-based

fileless malware detection. Sensors, 23(2):612, 2023.

[11] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. A

framework for behavior-based malware analysis in the cloud.

In Information Systems Security: 5th International

Conference, ICISS 2009 Kolkata, India, December 14-18,

2009 Proceedings 5, pages 178–192. Springer, 2009.

[12] Qublai K Ali Mirza, Irfan Awan, and Muhammad Younas. A

cloud-based energy efficient hosting model for malware

detection framework. In 2018 IEEE Global Communications

Conference (GLOBECOM), pages 1–6. IEEE, 2018.

[13] Qublai K Ali Mirza, Irfan Awan, and Muhammad Younas.

Cloudintell: An intelligent malware detection system. Future

Generation Computer Systems, 86:1042–1053, 2018.

[14] Sagar Shaw, Manish Kumar Gupta, and Sanjay Chakraborty.

Cloud based malware detection technique. In Proceedings of

the 5th International Conference on Frontiers in Intelligent

Computing: Theory and Applications: FICTA 2016, Volume

1, pages 485–495. Springer, 2017.

[15] Vaishali Ravindra Thakare and John Singh K. Computational

trust evaluation algorithm for cloud models using fuzzy logic

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 5, May 2024

137

approach. International Journal of Ad Hoc and Ubiquitous

Computing, 38(1-3):127–140, 2021.

[16] KARIM USMAN. DEVELOPMENT OF A MODEL FOR

USER-CENTRIC CYBER DISASTER RECOVERY. PhD

thesis, FACULTY OF PHYSICAL SCIENCES, NNAMDI

AZIKIWE UNIVERSITY, AWKA, 2019.

[17] Devi Priya VS, Sibi Chakkaravarthy Sethuraman, and

Muhammad Khurram Khan. Container security: Precaution

levels, mitigation strategies, and research perspectives.

Computers & Security, page 103490, 2023.

[18] Liang Xiao, Yanda Li, Xueli Huang, and XiaoJiang Du.

Cloud-based malware detection game for mobile devices with

offloading. IEEE Transactions on Mobile Computing,

16(10):2742–2750, 2017.

[19] Weiwei Zhou and Bin Yu. A cloud-assisted malware detection

and suppression framework for wireless multimedia system in

iot based on dynamic differential game. China

Communications, 15(2):209–223, 2018.

